Respuesta :

Answer:

[tex]{y^2}=-\dfrac{cosx}{2}-\dfrac{cosx}{6}-\dfrac{1}{3}[/tex]

Step-by-step explanation:

Given that

[tex]y\ cosx\ {y}'=cos^3x\ sinx[/tex]

y(0)= -1

[tex]y\ cosx\ {y}'=cos^3x[/tex]

The above equation is a differential equation

So now by separating variables

[tex]y\ {y}'=cos^2x\ sinx[/tex]

We know that

[tex]cos^2x=1-sin^2x[/tex]

So

[tex]y\ {y}'=(1-1-sin^2x) sinx[/tex]

[tex]y\ {y}'=sinx-sin^3x [/tex]

[tex]ydy=\left (sinx-sin^3x \right )dx[/tex]

[tex]sin^3x=\dfrac{3sinx-sin3x}{4}[/tex]

Now by taking integration both side

[tex]\int ydy=\int \left (sinx-sin^3x \right )dx[/tex]

[tex]\int ydy=\int \left (sinx-\dfrac{3sinx-sin3x}{4} \right )dx[/tex]

[tex]\dfrac{y^2}{2}=-\dfrac{cosx}{4}-\dfrac{cosx}{12}+C[/tex]

Now by using y(0)= -1

[tex]C=-\dfrac{1}{6}[/tex]

[tex]\dfrac{y^2}{2}=-\dfrac{cosx}{4}-\dfrac{cosx}{12}-\dfrac{1}{6}[/tex]

[tex]{y^2}=-\dfrac{cosx}{2}-\dfrac{cosx}{6}-\dfrac{1}{3}[/tex]