Answer:
(a) 0.314 m/sec (b) 0.492[tex]m/sec^2[/tex] (c) [tex]\frac{1}{6}sec[/tex]
Explanation:
We have given the mass of object m = 100 gram =0.1 kg
Amplitude A = 10 cm = 0.1 m
Time period T = 2 seconds
We know that [tex]T=\frac{2\pi }{\omega }[/tex]
So [tex]\omega =\frac{2\pi }{T}=\frac{2\pi }{2}=\piradian/sec[/tex]
(A) Velocity is given by [tex]V=A\omega =0.1\times 3.14=0.314m/sec[/tex]
(b) Acceleration when the object is 5 cm above the equilibrium position [tex]a=\omega ^2x=3.14^2\times 0.05=0.492m/sec^2[/tex]
(c) The equation of the motion is given by [tex]x(t)=Asin(\omega t)[/tex]
At x =0.05 m
[tex]0.05=0.1sin(3.14t)[/tex]
[tex]\frac{1}{3}sec[/tex]
So total time [tex]= \frac{1}{2\times 3}=\frac{1}{6}sec[/tex]