An unknown gas occupies a volume of 4.75 L at 1227 "Cand 5.00 atm. If the mass is 5.45 g what is the molar mass of the gas? (R=0.0821 atmL/molK) A) 23.8 g/mol B) 344 g/mol C) 215 g/mol D) 28.3 g/mol E) 141 g/mol

Respuesta :

Answer:

(d) 28.3 g/mol

Explanation:

We have given the volume V = 4.75 L

Pressure = 5 atm

Mass in gram = 5.45 gram

R = 0.02821 atmL/molK

Temperature T =1227°C=1227+273=1500 K

From ideal gas equation PV=nRT

[tex]5\times 4.75=n\times 0.0821\times 1500[/tex]

[tex]n=0.1928[/tex]

We know that [tex]n=\frac{mass\ in\ gram}{molar\ mass}[/tex]

So molar mass [tex]=\frac{mass\ in\ gram}{n}=\frac{5.45}{0.1928}=28.25g/mol[/tex]

Answer : The correct option is, (D) 28.3 g/mole

Explanation :

Using ideal gas equation :

[tex]PV=nRT\\\\PV=\frac{w}{M}RT[/tex]

where,

P = pressure of gas = 5.00 atm

V = volume of gas = 4.75 L

T = temperature of gas = [tex]1227^oC=273+1227=1500K[/tex]

n = number of moles of gas

w = mass of gas = 5.45 g

M = molar mass of gas = ?

R = gas constant = 0.0821 L.atm/mol.K

Now put all the given values in the ideal gas equation, we get:

[tex](5.00atm)\times (4.75L)=\frac{5.45g}{M}\times (0.0821L.atm/mol.K)\times (1500K)[/tex]

[tex]M=28.3g/mole[/tex]

Therefore, the molar mass of the gas is 28.3 g/mole