Respuesta :
Answer:
(d) 28.3 g/mol
Explanation:
We have given the volume V = 4.75 L
Pressure = 5 atm
Mass in gram = 5.45 gram
R = 0.02821 atmL/molK
Temperature T =1227°C=1227+273=1500 K
From ideal gas equation PV=nRT
[tex]5\times 4.75=n\times 0.0821\times 1500[/tex]
[tex]n=0.1928[/tex]
We know that [tex]n=\frac{mass\ in\ gram}{molar\ mass}[/tex]
So molar mass [tex]=\frac{mass\ in\ gram}{n}=\frac{5.45}{0.1928}=28.25g/mol[/tex]
Answer : The correct option is, (D) 28.3 g/mole
Explanation :
Using ideal gas equation :
[tex]PV=nRT\\\\PV=\frac{w}{M}RT[/tex]
where,
P = pressure of gas = 5.00 atm
V = volume of gas = 4.75 L
T = temperature of gas = [tex]1227^oC=273+1227=1500K[/tex]
n = number of moles of gas
w = mass of gas = 5.45 g
M = molar mass of gas = ?
R = gas constant = 0.0821 L.atm/mol.K
Now put all the given values in the ideal gas equation, we get:
[tex](5.00atm)\times (4.75L)=\frac{5.45g}{M}\times (0.0821L.atm/mol.K)\times (1500K)[/tex]
[tex]M=28.3g/mole[/tex]
Therefore, the molar mass of the gas is 28.3 g/mole