A certain corner of a room is selected as the origin of a rectangular coordinate system. A fly is crawling on an adjacent wall at a point having coordinates (1.8, 1.4), where the units are meters. Express the location of the fly in polar coordinates.

Respuesta :

Answer:

The location of the fly in polar coordinates is [tex](2.28,37.87\°)[/tex]

Step-by-step explanation:

we know that

The Cartesian coordinates of the fly are (1.8,1.4)

Convert Cartesian coordinates to Polar coordinates

[tex](x,y) ------> (r,\theta)[/tex]

Step 1

Find the value of r

Use Pythagoras Theorem to find the long side (the hypotenuse) r

[tex]r^{2}=x^{2}+y^{2}[/tex]

substitute

[tex]r^{2}=1.8^{2}+1.4^{2}[/tex]

[tex]r^{2}=5.2[/tex]

[tex]r=2.28[/tex]

Step 2

Find the angle theta

Use the Tangent Function to find the angle [tex]\theta[/tex]

[tex]tan(\theta)=\frac{y}{x}[/tex]

substitute

[tex]tan(\theta)=\frac{1.4}{1.8}[/tex]

[tex]\theta=arctan(\frac{1.4}{1.8})[/tex]

[tex]\theta=37.87\°[/tex]

therefore

The location of the fly in polar coordinates is [tex](2.28,37.87\°)[/tex]