In the two-slit experiment, monochromatic light of wavelength 600 nm passes through a 19) pair of slits separated by 2.20 x 10-5 m. (a) What is the angle corresponding to the first bright fringe? (b) What is the angle corresponding to the second dark fringe?

Respuesta :

Explanation:

It is given that,

Wavelength of monochromatic light, [tex]\lambda=600\ nm=6\times 10^{-7}\ m[/tex]

Slits separation, [tex]d=2.2\times 10^{-5}\ m[/tex]

(a) We need to find the angle corresponding to the first bright fringe. For bright fringe the equation is given as :

[tex]d\ sin\theta=n\lambda[/tex], n = 1

[tex]\theta=sin^{-1}(\dfrac{\lambda}{d})[/tex]

[tex]\theta=sin^{-1}(\dfrac{6\times 10^{-7}}{2.2\times 10^{-5}})[/tex]

[tex]\theta=1.56^{\circ}[/tex]

(b) We need to find the angle corresponding to the second dark fringe, n = 1

So, [tex]d\ sin\theta=(n+\dfrac{1}{2})\lambda[/tex]

[tex]sin\theta=\dfrac{3\lambda}{2d}[/tex]

[tex]\theta=sin^{-1}(\dfrac{3\lambda}{2d})[/tex]

[tex]\theta=sin^{-1}(\dfrac{3\times 6\times 10^{-7}}{2\times 2.2\times 10^{-5}})[/tex]

[tex]\theta=2.34^{\circ}[/tex]

Hence, this is the required solution.