Answer: [tex]2.14(10)^{16} m^{3}[/tex]
Explanation:
Assuming the cuboid has the following dimensions:
Width (W): [tex]1.9(10)^{7} m[/tex]
Length (L): [tex]1.9(10)^{7} m[/tex]
Height (H): [tex]3700 m[/tex]
Its volume is: [tex]V=(W)(L)(H)[/tex]
[tex]V=(1.9(10)^{7} m)(1.9(10)^{7} m)(3700m)[/tex]
[tex]V=1.34(10)^{18}m^{3}[/tex]
Now, if we want to know what is the [tex]1.6 \%[/tex] of this volume, we have to do the following:
[tex]V=1.34(10)^{18}m^{3} \frac{1.6}{100}=2.14(10)^{16} m^{3}[/tex] This is the 1.6 % of the volume of the cuboid