Consider the waveform expression. y (x, t) = ym sin (0.333x + 5.36 + 585t) The transverse displacement (y) of a wave is given as a function of position (x in meters) and time (t in seconds) by the expression. Determine the wavelength, frequency, period, and phase constant of this waveform meters a. Metersb. Hertz c. seconds d. radians

Respuesta :

Explanation:

The waveform expression is given by :

[tex]y(x,t)=y_m\ sin(0.333x+5.36+585t)[/tex]...........(1)

Where

y is the position

t is the time in seconds

The general waveform equation is given by :

[tex]y(x,t)=y_m\ sin(kx+\phi+\omega t)[/tex]..........(2)

Where

[tex]k=\dfrac{2\pi}{\lambda}[/tex]

[tex]\omega=2\pi f[/tex]

On comparing equation (1) and (2) we get :

[tex]0.333=\dfrac{2\pi}{\lambda}[/tex]

[tex]\lambda=18.86\ m[/tex]

[tex]585=2\pi f[/tex]

f = 93.10 Hz

Time period, [tex]T=\dfrac{1}{f}[/tex]

[tex]T=\dfrac{1}{0.010}[/tex]

T = 0.010 s

Phase constant, [tex]\phi=5.36\ radian[/tex]

Hence, this is the required solution.