Respuesta :

frika

Answer:

See explanation

Step-by-step explanation:

Consider the parallelogram ABCD (see attached diagram). First, find the lengths of all sides:

[tex]AB=\sqrt{(-1-4)^2+(2-4)^2}=\sqrt{25+4}=\sqrt{29}\\ \\BC=\sqrt{(4-2)^2+(4-(-1))^2}=\sqrt{4+25}=\sqrt{29}\\ \\CD=\sqrt{(2-(-3))^2+(-1-(-3))^2}=\sqrt{25+4}=\sqrt{29}\\ \\AD=\sqrt{(-1+3)^2+(2-(-3))^2}=\sqrt{4+25}=\sqrt{29}[/tex]

Since all sides are of equal length, this parallelogram is rhombus.

Check if it has right angles:

[tex]\overrightarrow{AB}=(5,2)\\ \\\overrightarrow {DA}=(2,5)\\ \\\cos\angle A=\dfrac{\overrightarrow {AB}\cdot \overrightarrow {DA}}{|\overrightarrow {AB}|\cdot|\overrightarrow{DA}|}=\dfrac{5\cdot2+2\cdot 5}{\sqrt{29}\cdot\sqrt{29}}=\dfrac{20}{29}\neq 0[/tex]

Angle A is not right angle, so this parallelogram  is neither rectangle, nor square.

The perimeter is

[tex]P_{ABCD}=AB+BC+CD+DA=\sqrt{29}+\sqrt{29}+\sqrt{29}+\sqrt{29}=4\sqrt{29}\ un.[/tex]

The area is

[tex]A_{ABCD}=2A_{\triangle ABD}=2\cdot \dfrac{1}{2}\cdot AB\cdot AD\cdot \sin \angle A\\ \\\\A_{ABCD}=\sqrt{29}\cdot \sqrt{29}\cdot \sqrt{1-\left(\dfrac{20}{29}\right)^2}=29\cdot\dfrac{\sqrt{29^2-20^2}}{29}=21\ un^2.[/tex]

Ver imagen frika