Hydroxylamine, HONH2, readily forms salts such as hydroxylamine hydrochloride, which are used as antioxidants in soaps. Hydroxylamine has Kb of 9.1 × 10–9. What is the pH of a 0.025 M HONH2 solution?

Respuesta :

Answer : The pH of the solution is, 9.18

Solution :  Given,

Concentration (c) = 0.025 M

Base dissociation constant = [tex]k_b=9.1\times 10^{-9}[/tex]

The equilibrium reaction for dissociation of [tex]HONH_2[/tex] (weak base) is,

                          [tex]HONH_2+H_2O\rightleftharpoons HONH_3^++OH^-[/tex]

initially conc.         c                              0             0

At eqm.             [tex]c(1-\alpha)[/tex]                       [tex]c\alpha[/tex]            [tex]c\alpha[/tex]

First we have to calculate the concentration of value of dissociation constant [tex](\alpha)[/tex].

Formula used :

[tex]k_b=\frac{(c\alpha)(c\alpha)}{c(1-\alpha)}[/tex]

Now put all the given values in this formula ,we get the value of dissociation constant [tex](\alpha)[/tex].

[tex]9.1\times 10^{-9}=\frac{(0.025\alpha)(0.025\alpha)}{0.025(1-\alpha)}[/tex]

By solving the terms, we get

[tex]\alpha=0.000603[/tex]

Now we have to calculate the concentration of hydroxide ion.

[tex][OH^-]=c\alpha=0.025\times 0.000603=1.5\times 10^{-5}M[/tex]

Now we have to calculate the pOH.

[tex]pOH=-\log [OH^-][/tex]

[tex]pOH=-\log (1.5\times 10^{-5})[/tex]

[tex]pOH=4.82[/tex]

Now we have to calculate the pH.

[tex]pH+pOH=14\\\\pH=14-pOH\\\\pH=14-4.82\\\\pH=9.18[/tex]

Therefore, the pH of the solution is, 9.18