Respuesta :

Answer:

The length of diagonal XU is 6.40 units

Step-by-step explanation:

* Lets explain how to find the distance between two points

- The rule of the distance between two points [tex](x_{1},y_{1})[/tex]

 and [tex](x_{2},y_{2})[/tex] is:

 [tex]d=\sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}[/tex]

* Lets solve the problem

-From the attached figure:

- The coordinates of the vertex X are (2 , 2)

- The coordinates of the vertex U are (-2 , 7)

∴ The point [tex](x_{1},y_{1})[/tex] = (2 , 2)

∴ The point [tex](x_{2},y_{2})[/tex] = (-2 , 7)

∴ [tex]x_{1}=2,x_{2}=-2[/tex]

∴  [tex]y_{1}=2,y_{2}=7[/tex]

∵ [tex]d=\sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}[/tex]

∴ [tex]d=\sqrt{(-2-2)^{2}+(7-2)^{2}}=\sqrt{(-4)^{2}+(5)^{2}}=\sqrt{16+25}=\sqrt{41}[/tex]

∵ [tex]\sqrt{41}=6.403124[/tex]

∴ d = 6.40

* The length of diagonal XU is 6.40 units