Respuesta :
Answer:
[tex]sin(\alpha+\beta)=\frac{-72+5\sqrt{133}}{169}[/tex]
[tex]cos(\alpha+\beta)=\frac{-30-12\sqrt{133}}{169}[/tex]
[tex]tan(\alpha+\beta=\frac{-10+\sqrt{133}}{18}}[/tex]
Step-by-step explanation:
If [tex]cos(\alpha)= \frac{12}{13}[/tex], [tex]\alpha[/tex] lies in quadrant IV, and [tex]cos^2(\alpha)+sin^2(\alpha)=1[/tex]:
[tex]sin^2(\alpha)=1-cos^2(\alpha)\\sin^2(\alpha)=1-(\frac{12}{13})^2sin^2(\alpha)=1-\frac{144}{1169}\\sin^2(\alpha)=\frac{25}{169}\\sin(\alpha)=\pm\frac{5}{13}[/tex]
Since [tex]\alpha[/tex] lies in quadrant IV, the value of [tex]sin(\alpha)[/tex] is negative so [tex]sin(\alpha)=-\frac{5}{13}[/tex].
If [tex]sin(\beta)=-\frac{6}{13}[/tex], [tex]\beta[/tex] lies in quadrant III, and [tex]cos^2(\beta)+sin^2(\beta)=1[/tex]:
[tex]cos^2(\beta)=1-sin^2(\beta)\\cos^2(\beta)=1-(\frac{-6}{13})^2\\cos^2(\beta)=1-\frac{36}{169}\\cos^2(\beta)=\frac{133}{169}\\cos(\beta)=\pm\frac{\sqrt{133}}{13}[/tex]
[tex]\beta[/tex] lies in quadrant III, the value of [tex]cos(\beta)[/tex] is negative so [tex]cos(\beta)=-\frac{\sqrt{133}}{13}[/tex].
The formula for the of two angles:
[tex]sin(\alpha+\beta)=sin(\alpha)cos(\beta)+sin(\beta)cos(\alpha)\\sin(\alpha+\beta)=(-\frac{5}{13})(\frac{-\sqrt{133}}{13})+(-\frac{6}{13})(\frac{12}{13})\\sin(\alpha+\beta)=\frac{5\sqrt{133}}{169}-\frac{72}{169}\\sin(\alpha+\beta)=\frac{-72+5\sqrt{133}}{169}[/tex]
[tex]cos(\alpha+\beta)=cos(\alpha)cos(\beta)-sin(\alpha)sin(\beta)\\cos(\alpha+\beta)=(\frac{12}{13})(-\frac{\sqrt{133}}{13})-(-\frac{5}{13})(-\frac{6}{13})\\cos(\alpha+\beta)=\frac{-12\sqrt{133}}{169}-\frac{30}{169}\\cos(\alpha+\beta)=\frac{-30-12\sqrt{133}}{169}[/tex]
For [tex]tan(\alpha+\beta)[/tex]
[tex]\theta=\alpha+\beta[/tex]
[tex]tan(\theta)=\frac{cos(\theta)}{sin(\theta)}\\tan(\alpha+\beta)=\frac{cos(\alpha+\beta)}{sin(\alpha+\beta)} \\tan(\alpha+\beta)=\frac{\frac{-72+5\sqrt{133}}{169}}{\frac{-30-12\sqrt{133}}{169}} \\tan(\alpha+\beta)=\frac{(-72+5\sqrt{133})169}{(-30-12\sqrt{133})169}[/tex]
[tex]tan(\alpha+\beta)=\frac{-72+5\sqrt{133}}{-30-12\sqrt{133}}(\frac{-30+12\sqrt{133}}{-30+12\sqrt{133}})\\tan(\alpha+\beta)=\frac{2160-150\sqrt{133}-864\sqrt{133}+60(133)}{900-144(133)}}\\tan(\alpha+\beta)=\frac{2160-1014\sqrt{133}+7980}{900-19152}}\\tan(\alpha+\beta)=\frac{10140-1014\sqrt{133}}{-18252}}\\tan(\alpha+\beta)=\frac{1014(10-\sqrt{133})}{-18252}}\\tan(\alpha+\beta)=\frac{-(10-\sqrt{133})}{18}}\\tan(\alpha+\beta)=\frac{-10+\sqrt{133}}{18}}[/tex]