Find the volume of the solid formed by revolving the region bounded by LaTeX: y = \sqrt{x} y = x and the lines LaTeX: y = 1 y = 1 and LaTeX: x = 4 x = 4 about the line LaTeX: y = 1 y = 1 .

Respuesta :

Answer:

The volume is:

[tex]\displaystyle\frac{37\pi}{10} [/tex]

Step-by-step explanation:

See the sketch of the region in the attached graph.

We set the integral using washer method:

[tex]\displaystyle\int_a^b\pi r^2dx[/tex]

Notice here the radius of the washer is the difference of the given curves:

[tex]x-\sqrt{x}[/tex]

So the integral becomes:

[tex]\displaystyle\int_1^4\pi(x-\sqrt{x})^2dx[/tex]

We solve it:

Factor [tex]\pi[/tex] out and distribute the exponent (you can use FOIL):

[tex]\displaystyle\pi\int_1^4x^2-2x\sqrt{x}+x\,dx[/tex]

Notice: [tex]x\sqrt{x}=x\cdot x^{1/2}=x^{3/2}[/tex]

So the integral becomes:

[tex]\displaystyle\pi\int_1^4x^2-2x^{3/2}+x\,dx[/tex]

Then using the basic rule to evaluate the integral:

[tex]\displaystyle\pi\left[\frac{x^3}{3}-\frac{2x^{5/2}}{5/2}+\frac{x^2}{2}\right|_1^4[/tex]

Simplifying a bit:

[tex]\displaystyle\pi\left[\frac{x^3}{3}-\frac{4x^{5/2}}{5}+\frac{x^2}{2}\right|_1^4[/tex]

Then plugging the limits of the integral:

[tex]\displaystyle\pi\left[\frac{4^3}{3}-\frac{4(4)^{5/2}}{5}+\frac{4^2}{2}-\left(\frac{1}{3}-\frac{4}{5}+\frac{1}{2}\right)\right][/tex]

Taking the root (rational exponents):

[tex]\displaystyle\pi\left[\frac{4^3}{3}-\frac{4(2)^{5}}{5}+\frac{4^2}{2}-\left(\frac{1}{3}-\frac{4}{5}+\frac{1}{2}\right)\right][/tex]

Then doing those arithmetic computations we get:

[tex]\displaystyle\frac{37\pi}{10}[/tex]

Ver imagen EnigmaRiddle