Suppose the germination periods, in days, for grass seed are normally distributed. If the population standard deviation is 3 days, what minimum sample size is needed to be 90% confident that the sample mean is within 1 day of the true population mean?

Respuesta :

Answer: 25

Step-by-step explanation:

Given : Level of confidence = 0.90

Significance level : [tex]\alpha=1-0.90=0.10[/tex]

Critical value : [tex]z_{\alpha/2}=1.645[/tex]

Margin of error : [tex]E=\text{ 1 days}[/tex]

Standard deviation: [tex]\sigma=\text{ 3 day}[/tex]

The formula to find the sample size : [tex]n=(\dfrac{z_{\alpha/2}\sigma}{E})^2[/tex]

[tex]n=(\dfrac{(1.645)(3)}{1})^2=24.354225\approx25[/tex]

Hence, the minimum sample size needed= 25.