The points A(0, 0), B(0, 4a - 5) and C(2a + 1, 2a + 6) form a triangle. If angle ABC = 90, what is the area of triangle ABC?(A) 102(B) 120(C) 132(D) 144(E) 156

Respuesta :

Answer:

A:102

Step-by-step explanation:

We are given that the points A(0,0),B(0,4a-5) and C(2a-+1,2a+6) form a triangle.

If angle ABC=[tex]90^{\circ}[/tex]

We have to find the area of triangle ABC

If angle ABC= 90 degree

From given below figure

[tex]4a-5=2a+6[/tex]

[tex]4a-2a=6+5[/tex]

[tex]2a=11[/tex]

[tex]a=\frac{11}{2}=5.5[/tex]

Substitute the values then we get

B(0,17) and C (12,17)

Distance formula

[tex]\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

AB=[tex]\sqrt{(0-0)^2+(17-0)^2}=17 units[/tex]

BC=[tex]\sqrt{(12-0)^2+(17-17)^2}[/tex]

BC=[tex]\sqrt{144+0}=\sqrt{144}=12[/tex] units

Area of triangle =[tex]\frac{1}{2}\times b\times h[/tex]

Substitute the values

Then we get

Area of triangle ABC=[tex]\frac{1}{2}\times 17\times 12[/tex]

Area of triangle ABC=102 square units

Answer: A: 102

Ver imagen lublana