You push downward on a box at an angle 25° below the horizontal with a force of 750 N. If the box is on a flat horizontal surface for which the coefficient of static friction with the box is 0.66, what is the mass of the heaviest box you will be able to move?

Respuesta :

Answer:

72.75 kg

Explanation:

[tex]F[/tex] = force applied on a box = 750 N

[tex]m[/tex] = mass of the box

[tex]N[/tex] = Normal force on the box

[tex]\mu _{s}[/tex] = Coefficient of static friction = 0.66

From the force diagram, force equation along the vertical direction is given as

[tex]N = F Sin25 + mg[/tex]

[tex]N = 750 Sin25 + mg[/tex]                                                         eq-1

Static frictional force is given as

[tex]f_{s} = \mu _{s} N[/tex]

using eq-1

[tex]f_{s} = \mu _{s} (750 Sin25 + mg)[/tex]

For the box to move,

[tex]F Cos25 = f_{s}[/tex]

[tex]750 Cos25 = \mu _{s} (750 Sin25 + mg)[/tex]

[tex]750 Cos25 = (0.66) (750 Sin25 + m (9.8))[/tex]

m = 72.75 kg

Ver imagen JemdetNasr