Consider the following reaction: CO(g)+2H2(g)⇌CH3OH(g) Kp=2.26×104 at 25 ∘C. Calculate ΔGrxn for the reaction at 25 ∘C under each of the following conditions. PCH3OH= 1.4 atm ; PCO=PH2= 1.2×10−2 atm

Respuesta :

Answer : The value of [tex]\Delta G_{rxn}[/tex] is, [tex]8.867kJ/mole[/tex]

Explanation :

The formula used for [tex]\Delta G_{rxn}[/tex] is:

[tex]\Delta G_{rxn}=\Delta G^o+RT\ln Q[/tex]   ............(1)

where,

[tex]\Delta G_{rxn}[/tex] = Gibbs free energy for the reaction

[tex]\Delta G_^o[/tex] =  standard Gibbs free energy

R = gas constant = 8.314 J/mole.K

T = temperature = [tex]25^oC=273+25=298K[/tex]

Q = reaction quotient

First we have to calculate the [tex]\Delta G_^o[/tex].

Formula used :

[tex]\Delta G^o=-RT\times \ln K_p[/tex]

Now put all the given values in this formula, we get:

[tex]\Delta G^o=-(8.314J/mole.K)\times (298K)\times \ln (2.26\times 10^{4})[/tex]

[tex]\Delta G^o=-24839.406J/mole=-24.83\times 10^3J/mole=-24.83kJ/mole[/tex]

Now we have to calculate the value of 'Q'.

The given balanced chemical reaction is,

[tex]CO(g)+2H_2(g)\rightarrow CH_3OH(g)[/tex]

The expression for reaction quotient will be :

[tex]Q=\frac{(p_{CH_3OH})}{(p_{CO})\times (p_{H_2})^2}[/tex]

In this expression, only gaseous or aqueous states are includes and pure liquid or solid states are omitted.

Now put all the given values in this expression, we get

[tex]Q=\frac{(1.4)}{(1.2\times 10^{-2})\times (1.2\times 10^{-2})^2}[/tex]

[tex]Q=8.1\times 10^{5}[/tex]

Now we have to calculate the value of [tex]\Delta G_{rxn}[/tex] by using relation (1).

[tex]\Delta G_{rxn}=\Delta G^o+RT\ln Q[/tex]

Now put all the given values in this formula, we get:

[tex]\Delta G_{rxn}=-24.83kJ/mole+(8.314\times 10^{-3}kJ/mole.K)\times (298K)\ln (8.1\times 10^{5})[/tex]

[tex]\Delta G_{rxn}=8.867\times 10^3J/mole=8.867kJ/mole[/tex]

Therefore, the value of [tex]\Delta G_{rxn}[/tex] is, [tex]8.867kJ/mole[/tex]