A 2.00-kg block of aluminum at 50.0 °C is dropped into 5.00 kg of water at 20.0 °C. What is the change in entropy during the approach to equilibrium, assuming no heat is exchanged with the environment? The specific heat of aluminum is 0.22 cal/(g∙K).

Respuesta :

Given:

[tex]m_{1} = 2000gm[/tex]

[tex]m_{2} = 2000gm[/tex]

[tex]T_{1} = 50^{\circ}C[/tex] = 323 K

[tex]T_{2} = 20^{\circ}C[/tex] = 293 K

specific heat of aluminium, [tex]C_{p} = 0.22 cal/(g.K)[/tex]

specific heat of water, [tex]C_{p} = 0.22 cal/(g.K)[/tex]

Formula Used:

Q = m[tex]C_{p}\Delta T[/tex]

Solution:

Let the temperature at equilibrium be ' [tex]T_{e}[/tex]' K

Now at equilibrium, using the given formula:

[tex]m_{1}C_{p}\Delta T_{e} = m_{2}C\Delta T_{e}[/tex]

[tex]2000\times 0.22\times (323 - T_{e}) = 5000\times1 \times (T_{e} - 293)[/tex]

[tex] 323 - T_{e} = \frac{5000}{440}(T_{e} - 293)[/tex]

[tex] 323 - T_{e} = 11.36(T_{e} - 293)[/tex]

Temperature at equilibrium, [tex]T_{e}[/tex] =  295.513 K

Now, change in entropy(in J/K) is given by:

[tex]\Delta s =  \frac{Q}{\Delta T}[/tex]

Q = m[tex]C_{p}\Delta T_{e}[/tex]

[tex]Q = 2000\times 0.22\times (323 - 295.513)[/tex] = 12094.28 cal

Now,

[tex]\Delta s =  \frac{12094.28}{295.513}[/tex] = 40.93 cal/K = 9.78 J/K

Therefore change in entropy is given by:

[tex]\Delta s =  9.78 J/K[/tex]