Answer:
Explanation:
a)
d = separation of the slits = 0.30 mm = 0.30 x 10⁻³ m
λ = wavelength of the light = 496 nm = 496 x 10⁻⁹ m
n = order of the bright fringe
D = screen distance = 130 cm = 1.30 m
[tex]x_{n}[/tex] = Position of nth bright fringe
Position of nth bright fringe is given as
[tex]x_{n} =\frac{ n D \lambda }{d}[/tex]
For n = 1
[tex]x_{1} =\frac{ (1) (1.30)(496\times 10^{-9})}{0.30\times 10^{-3}}[/tex]
[tex]x_{1} = 2.15\times 10^{-3}m[/tex]
For n = 2
[tex]x_{2} =\frac{ (2) (1.30)(496\times 10^{-9})}{0.30\times 10^{-3}}[/tex]
[tex]x_{2} = 4.30\times 10^{-3}m[/tex]
For n = 3
[tex]x_{2} =\frac{ (2) (1.30)(496\times 10^{-9})}{0.30\times 10^{-3}}[/tex]
[tex]x_{2} = 6.45\times 10^{-3}m[/tex]
b)
Position of nth dark fringe is given as
[tex]y_{n} =\frac{ (2n+1) D \lambda }{2d}[/tex]
For n = 1
[tex]y_{1} =\frac{ (2(1)+1) (1.30)(496\times 10^{-9})}{2(0.30\times 10^{-3})}[/tex]
[tex]y_{1} = 3.22\times 10^{-3}m[/tex]
For n = 2
[tex]y_{2} =\frac{ (2(2)+1) (1.30)(496\times 10^{-9})}{2(0.30\times 10^{-3})}[/tex]
[tex]y_{2} = 5.4\times 10^{-3}m[/tex]
For n = 3
[tex]y_{3} =\frac{ (2(3)+1) (1.30)(496\times 10^{-9})}{2(0.30\times 10^{-3})}[/tex]
[tex]x_{3} = 7.5\times 10^{-3}m[/tex]