The given family of functions is the general solution of the differential equation on the indicated interval. Find a member of the family that is a solution of the initial-value problem. y = c1ex + c2e−x, (−∞, ∞); y'' − y = 0, y(0) = 0, y'(0) = 7

Respuesta :

Given that [tex]y(0)=0[/tex] and [tex]y'(0)=7[/tex], we have

[tex]\begin{cases}y(x)=C_1e^x+C_2e^{-x}\\y'(x)=C_1e^x-C_2e^{-x}\end{cases}[/tex]

[tex]\implies\begin{cases}0=C_1+C_2\\7=C_1-C_2\end{cases}[/tex]

[tex]\implies C_1=\dfrac72,C_2=-\dfrac72[/tex]

so that the particular solution is

[tex]\boxed{y(x)=\dfrac72e^x-\dfrac72e^{-x}}[/tex]

What is differential equation?

Equations which involves functions and its derivative is known as differential equation. these equations are highly used to model behaviour of complex system.

How to solve?

y(x) = [tex]C_{1} *e^{x}[/tex] + [tex]C_{2} *e^{-x}[/tex]

y(0) = [tex]C_{1} + C_{2}[/tex]

0 = [tex]C_{1} + C_{2}[/tex] --------------------------------------------------(1)

y'(x) =  [tex]C_{1} *e^{x}[/tex] - [tex]C_{2} *e^{-x}[/tex]

y'(0) =  [tex]C_{1} - C_{2}[/tex]

7 = [tex]C_{1} - C_{2}[/tex]  -------------------------------------------------(2)

From Equation 1 and 2

[tex]C_{1} + C_{2}[/tex] = 0

[tex]C_{1} - C_{2}[/tex] = 7

2[tex]C_{1}[/tex] = 7

[tex]C_{1}[/tex] = [tex]\frac{7}{2}[/tex]

and [tex]C_{2}[/tex] = - [tex]\frac{7}{2}[/tex]

Thus, y =   [tex]\frac{7}{2}[/tex] [tex]e^{x}[/tex] -  [tex]\frac{7}{2}[/tex] [tex]e^{x}[/tex]

To learn more about differential equations visit:

https://brainly.com/question/18760518

#SPJ2