Respuesta :

Answer:

[tex]5 \frac{5}{8}[/tex] cups

Step-by-step explanation:

Given: A baker is using a cookie that calls for 2 [tex]\frac{1}{4}[/tex] cups of flour to yield 36 cookies.

To find the number of flour will the baker need to make 90 cookies, we form a proportion.

Let's convert 2 [tex]\frac{1}{4}[/tex] to improper fraction.

[tex]2\frac{1}{4} = \frac{(2*4) + 1}{4} = \frac{9}{4}[/tex]

Let "x" be the amount flour to make 90 cookies

Amount of Flour                 Number of cookies

 [tex]\frac{9}{4}[/tex]                               36

       x                                            90

Now form a proportion.

[tex]\frac{\frac{9}{4}}{x} = \frac{36}{90}[/tex]

Now let's cross multiply, we get

[tex]\frac{9}{4} *90 = 36x\\\[/tex]

[tex]\frac{810}{4} = 36x\\x = \frac{810 }{4*36} \\x = \frac{810}{144} \\\\x = 5 \frac{90}{144}[/tex]

Now let's simplify the fraction part, Here the GCF of 90 and 144 is 18, so dividing the fraction's numerator and the denominator by 18, we get

x = [tex]5 \frac{5}{8}[/tex] cups

So the baker needs [tex]5 \frac{5}{8}[/tex] cups to make 90 cookies.