Respuesta :

Answer:

11) [tex]r=4[/tex]

12) [tex]z_3+z_1=A[/tex]

13a) [tex]\bar z_1=3-2i[/tex] and [tex]\bar z_2=-5+3i[/tex]

13b)  [tex]\bar {z_1z_2}=-9-19i[/tex]

Step-by-step explanation:

11. The given equation in rectangular coordinates is [tex]x^2+y^2=16[/tex]

To convert to polar form, use the relation [tex]x^2+y^2=r^2[/tex]

This implies that:

[tex]\implies r^2=16[/tex]

[tex]r=\sqrt{16}[/tex]

[tex]r=4[/tex]

In polar coordinates, [tex]r=4[/tex] is a circle with radius 4 units.

12.  From the diagram;

[tex]z_3=-3-3i[/tex]

[tex]z_2=1+i[/tex]

[tex]z_1=4+i[/tex]

[tex]A=1-2i[/tex]

We can see that two arrows are moving in anticlockwise direction to meet A which is moving in the clockwise direction;

[tex]\implies (-3-3i)+(4+i)=1-2i[/tex]

[tex]\therefore z_3+z_1=A[/tex]

13. The conjugate of the complex number: [tex]z=a+bi[/tex] is [tex]\bar z=a-bi[/tex]

Part a) The given complex numbers are:

[tex]z_1=3+2i[/tex] and [tex]z_2=-5-3i[/tex]

The conjugates of these complex numbers are:

[tex]\bar z_1=3-2i[/tex] and [tex]\bar z_2=-5+3i[/tex]

Part b) The product of [tex]z_1=3+2i[/tex] and [tex]z_2=-5-3i[/tex] is

[tex]z_1z_2=(3+2i)(-5-3i)[/tex]

[tex]z_1z_2=-15-9i-10i-6i^2[/tex]

[tex]z_1z_2=-9-19i[/tex]

The conjugate of the product is:

[tex]\bar {z_1z_2}=-9-19i[/tex]