Respuesta :

[tex]\left(\dfrac{f}{g}\right)(x)=\dfrac{3x+2}{3x-5}[/tex]

Answer:

[tex](\dfrac{f}{g})(x)=\dfrac{3x+2}{3x-5}[/tex] for [tex]x\neq \dfrac{5}{3}[/tex].

Step-by-step explanation:

The given functions are

[tex]f(x)=3x+2[/tex]

[tex]g(x)=3x-5[/tex]

We need to find the function [tex](\dfrac{f}{g})(x)[/tex].

Using division property of functions.

[tex](\dfrac{f}{g})(x)=\dfrac{f(x)}{g(x)}[/tex]

Substitute the values of functions.

[tex](\dfrac{f}{g})(x)=\dfrac{3x+2}{3x-5}[/tex]

This function is defined for all values of x, except a value for which 3x-5=0.

[tex]3x-5=0\Rightarrow x=\dfrac{5}{3}[/tex]

Therefore, the required function is [tex](\dfrac{f}{g})(x)=\dfrac{3x+2}{3x-5}[/tex] for [tex]x\neq \dfrac{5}{3}[/tex].