Respuesta :
Answer:
[tex]a_{11} = 14336[/tex]
Step-by-step explanation:
The general formula for the twelfth term of a geometric sequence is:
[tex]a_n = a_1(r)^{n-1}[/tex]
Where [tex]a_1[/tex] is the first term and r is the common ratio
In this case we know that:
[tex]a_1 = 14\\r=-2[/tex]
The equation is:
[tex]a_n = 14(-2)^{n-1}[/tex]
So for [tex]n = 11[/tex] we look for [tex]a_{11}[/tex]
[tex]a_{11} = 14(-2)^{11-1}[/tex]
[tex]a_{11} = 14(-2)^{10}[/tex]
[tex]a_{11} = 14336[/tex]
Answer:
[tex]11^{th}[/tex] term = 14336
Step-by-step explanation:
We are given the first term [tex] a _ 1 = 1 4 [/tex] and common ratio [tex] r = - 2 [/tex] of a geometric sequence and we are to find the [tex]11^{th}[/tex] term of this sequence.
We know that the formula to find the [tex]n^{th}[/tex] term in a geometric sequence is given by:
[tex]n^{th}[/tex] term = [tex] a r ^ { n - 1 } [/tex]
Substituting the given values in the above formula:
[tex]11^{th}[/tex] term = [tex]14 \times(-2)^{11-1}[/tex]
[tex]11^{th}[/tex] term = [tex]14 \times(-2)^{10}[/tex]
[tex]11^{th}[/tex] term = 14336