Respuesta :
Check the picture below.
[tex]\bf \textit{volume of a pyramid}\\\\ V=\cfrac{1}{3}Bh~~ \begin{cases} B=area~of\\ \qquad its~base\\ h=height\\ \cline{1-1} B=\stackrel{183\times 183}{33489}\\ h=110 \end{cases}\implies V=\cfrac{1}{3}(33489)(110)\implies V=1227930[/tex]

Answer:
V =1127930 m^3
Step-by-step explanation:
The volume is
V = 1/3 B h
where B is the area of the base
B = area of the square
B = 183*183 since it is a square
B = 33489
V = 1/3 *(33489) * 110
V =1127930 m^3