Respuesta :

Answer:

D. [tex]x=\frac{-4-\sqrt{31}}{3}[/tex] or  [tex]x=\frac{-4+\sqrt{31}}{3}[/tex]

Step-by-step explanation:

The given equation is:

[tex]3x^2+8x=5[/tex]

Divide through by 3;

[tex]x^2+\frac{8}{3}x=\frac{5}{3}[/tex]

Add the square of half the coefficient of x to both sides.

[tex]x^2+\frac{8}{3}x+(\frac{4}{3})^2=\frac{5}{3}++(\frac{4}{3})^2[/tex]

[tex]x^2+\frac{8}{3}x+\frac{16}{9}=\frac{5}{3}+\frac{16}{9}[/tex]

The left hand side is now a perfect square:

[tex](x+\frac{4}{3})^2=\frac{31}{9}[/tex]

Take square root

[tex]x+\frac{4}{3}=\pm \sqrt{ \frac{31}{9}}[/tex]

[tex]x=-\frac{4}{3}\pm \sqrt{ \frac{31}{9}}[/tex]

[tex]x=-\frac{4}{3}\pm \frac{\sqrt{31}}{3}[/tex]

D. [tex]x=\frac{-4-\sqrt{31}}{3}[/tex] or  [tex]x=\frac{-4+\sqrt{31}}{3}[/tex]