Calculate s f(x, y, z) ds for the given surface and function. g(r, θ) = (r cos θ, r sin θ, θ), 0 ≤ r ≤ 4, 0 ≤ θ ≤ 2π; f(x, y, z) = x2 + y2

Respuesta :

[tex]g(r,\theta)=(r\cos\theta,r\sin\theta,\theta)\implies\begin{cases}g_r=(\cos\theta,\sin\theta,0)\\g_\theta=(-r\sin\theta,r\cos\theta,1)\end{cases}[/tex]

The surface element is

[tex]\mathrm dS=\|g_r\times g_\theta\|\,\mathrm dr\,\mathrm d\theta=\sqrt{1+r^2}\,\mathrm dr\,\mathrm d\theta[/tex]

and the integral is

[tex]\displaystyle\iint_Sx^2+y^2\,\mathrm dS=\int_0^{2\pi}\int_0^4((r\cos\theta)^2+(r\sin\theta)^2)\sqrt{1+r^2}\,\mathrm dr\,\mathrm d\theta[/tex]

[tex]=\displaystyle2\pi\int_0^4r^2\sqrt{1+r^2}\,\mathrm dr=\frac\pi4(132\sqrt{17}-\sinh^{-1}4)[/tex]

###

To compute the last integral, you can integrate by parts:

[tex]u=r\implies\mathrm du=\mathrm dr[/tex]

[tex]\mathrm dv=r\sqrt{1+r^2}\,\mathrm dr\implies v=\dfrac13(1+r^2)^{3/2}[/tex]

[tex]\displaystyle\int_0^4r^2\sqrt{1+r^2}\,\mathrm dr=\frac r3(1+r^2)^{3/2}\bigg|_0^4-\frac13\int_0^4(1+r^2)^{3/2}\,\mathrm dr[/tex]

For this integral, consider a substitution of

[tex]r=\sinh s\implies\mathrm dr=\cosh s\,\mathrm ds[/tex]

[tex]\displaystyle\int_0^4(1+r^2)^{3/2}\,\mathrm dr=\int_0^{\sinh^{-1}4}(1+\sinh^2s)^{3/2}\cosh s\,\mathrm ds[/tex]

[tex]\displaystyle=\int_0^{\sinh^{-1}4}\cosh^4s\,\mathrm ds[/tex]

[tex]=\displaystyle\frac18\int_0^{\sinh^{-1}4}(3+4\cosh2s+\cosh4s)\,\mathrm ds[/tex]

and the result above follows.