Which system of equations does not have a real solution?
A. y = x 2 + 3x - 5 and x + y = -10
B. y = x 2 + 3x - 5 and 4x + 5y = 20
C. y = x 2+ 3x- 5 and x + y = -9

Respuesta :

Answer:

It's A.

Step-by-step explanation:

Let's look at option A:

From the second equation y =  -10 - x. Substituting in the first equation:

-10 - x = x^2 + 3x - 5

x^2 + 4x + 5 = 0

Checking the discriminant b^2 - 4ac we get 16 - 4*1*5 = -4 so there are no real roots. (A negative discriminant means no real roots).

So A has no real solution.

B.

x^2 + 3x - 5 =  (20 - 4x)/5 = 4 - 0.8x

x^2 +3.8x - 9 = 0

b^2 - 4ac = (3.8)^2 - 4*1*-9 = 50.44 (positive) so there are real roots.

C.

x^2 + 3x - 5 =  -9 - x

x^2 + 4x + 4 = 0

b^2 - 4ac =  4^2 - 4*1*4 = 0  so there are real roots.

Solution B does not have real root.

What are the real roots?

The solution of the quadraa tic equation those b²  - 4ac value gives positive number have real roots.

checking:

A. y = x 2 + 3x - 5 and x + y = -10

y =  -10 - x.

-10 - x = x² + 3x - 5

x² + 4x + 5 = 0

∵ b²  - 4ac

∴ 16 - 4*1*5 = -4 (no real roots)

B. y = x 2 + 3x - 5 and 4x + 5y = 20

x²  + 3x - 5 =  (20 - 4x)/5 = 4 - 0.8x

x² +3.8x - 9 = 0

b²  - 4ac = (3.8)^2 - 4*1*-9 = 50.44 (positive) real roots.

C. y = x 2+ 3x- 5 and x + y = -9

x² + 3x - 5 =  -9 - x

x² + 4x + 4 = 0

b²  - 4ac =  4²  - 4*1*4 = 0  ( real roots).

Learn more about real roots here:-https://brainly.com/question/13120979

#SPJ2