Respuesta :
Answer:
a) T(3,0)
b) |CT|=2.83
c) |DT|=4.47
Step-by-step explanation:
The given parallelogram CARD has vertices (5, -2), (-1, -2), (1, 2), and (7, 2)
The diagonals of a parallelogram bisect each other.
Find the midpoint of one diagonal, that gives us the point of intersection of the diagonals T.
The midpoint of C(5,-2) and (1,2) is
[tex]T(\frac{5+1}{2},\frac{-2+2}{2} )[/tex]
[tex]T(3,0)[/tex]
b) To find the length of CT, we use the distance formula; where C(5,-2) ahd T(3,0).
[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
[tex]d=\sqrt{(3-5)^2+(-2-0)^2}[/tex]
[tex]d=\sqrt{4+4}[/tex]
[tex]d=\sqrt{8}[/tex]
[tex]d=2\sqrt{2}=2.83[/tex]
The length of CT is 2.83 to the nearest hundredth
c) To find the length of DT, we use the distance formula; where D(7,2) ahd T(3,0).
[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
[tex]d=\sqrt{(3-7)^2+(2-0)^2}[/tex]
[tex]d=\sqrt{16+4}[/tex]
[tex]d=\sqrt{20}[/tex]
[tex]d=2\sqrt{5}=4.47[/tex]
The length of DT is 4.47 to the nearest hundredth