Respuesta :

Answer: [tex]x=-1[/tex]

Step-by-step explanation:

By the negative exponent rule, you have that:

[tex](\frac{1}{a})^n=a^{-n}[/tex]

By the exponents properties, you know that:

[tex](m^n)^l=m^{(nl)}[/tex]

Therefore, you can rewrite the left side of the equation has following:

[tex](\frac{1}{8})^{-(2x+7)}=(\frac{1}{32})^{3x}[/tex]

 Descompose 32 and 8 into its prime factors:

[tex]32=2*2*2*2*2=2^5\\8=2*2*2=2^3[/tex]

Rewrite:

[tex](\frac{1}{2^3})^{-(2x+7)}=(\frac{1}{2^5})^{3x}[/tex]

Then:

[tex](\frac{1}{2})^{-3(2x+7)}=(\frac{1}{2})^{5(3x)}[/tex]

As the base are equal, then:

[tex]-3(2x+7)=5(3x)[/tex]

Solve for x:

[tex]-6x-21=15x\\-21=15x+6x\\-21=21x\\x=-1[/tex]