Respuesta :

Answer:

P(15, 10)

Step-by-step explanation:

By definition;

[tex]nC_r=\binom{n}{r}=\frac{n!}{(n-r)!r!}[/tex]

and

[tex]nP_r=\binom{n}{r}=\frac{n!}{(n-r)!}[/tex]

This implies that;

[tex]15P_{10}=\binom{15}{10}=\frac{15!}{(15-10)!}=\frac{15!}{5!}[/tex]

[tex]15C_{10}=\binom{15}{10}=\frac{15!}{(15-10)!10!}=\frac{15!}{5!10!}[/tex]

[tex]15C_{5}=\binom{15}{5}=\frac{15!}{(15-5)!5!}=\frac{15!}{5!10!}[/tex]