Respuesta :

frika

Answer:

A.

[tex]\begin{array}{cccccc}x&1&2&3&4&5\\f&0.2&0.3&0.05&0.2&0.25\end{array}[/tex]

Step-by-step explanation:

First find the sum

[tex]\sum f=4+6+1+4+5=20.[/tex]

Now, find the probabilities:

  • [tex]Pr(x=1)=\dfrac{4}{20}=\dfrac{1}{5}=0.2;[/tex]
  • [tex]Pr(x=2)=\dfrac{6}{20}=\dfrac{3}{10}=0.3;[/tex]
  • [tex]Pr(x=3)=\dfrac{1}{20}=0.05;[/tex]
  • [tex]Pr(x=4)=\dfrac{4}{20}=\dfrac{1}{5}=0.2;[/tex]
  • [tex]Pr(x=5)=\dfrac{5}{20}=\dfrac{1}{4}=0.25.[/tex]

Hence, the frequency distribution table is

[tex]\begin{array}{cccccc}x&1&2&3&4&5\\f&0.2&0.3&0.05&0.2&0.25\end{array}[/tex]

Using the probability concept, it is found that the following probability table corresponds to the frequency table:

x 1 2 3 4 5

p 0.2 0.3 0.05 0.2 0.5

Which is the first table.

  • The frequency table gives the number of times each outcome happened.
  • A probability is the number of desired outcomes divided by the number of total outcomes.

In the frequency table:

  • Total of 4 + 6 + 1 + 4 + 5 = 20 outcomes.

The probability of each outcome is:

[tex]p(1) = \frac{4}{20} = 0.2[/tex]

[tex]p(2) = \frac{6}{20} = 0.3[/tex]

[tex]p(3) = \frac{1}{20} = 0.05[/tex]

[tex]p(4) = \frac{4}{20} = 0.2[/tex]

[tex]p(5) = \frac{5}{20} = 0.25[/tex]

Then, the corresponding table is:

x 1 2 3 4 5

p 0.2 0.3 0.05 0.2 0.5

Which is the first table.

A similar problem is given at https://brainly.com/question/23156292