Respuesta :

Answer:

(f+g)(y) = 1/y + y2+2y-5

Step-by-step explanation:

To find (f+g)(y) we literally add the two expressions together. The expression becomes:

(f+g)(y) = f(y) + g(y)

           = 1/y + y2+2y-5

For this case we have given two functions f (y) and g (y), then:

[tex](f + g) (y) = f (y) + g (y)[/tex]

We have:

[tex]f (y) = \frac {1} {y}\\g (y) = y ^ 2 + 2y-5[/tex]

Adding we have:

[tex](f + g) (y) = \frac {1} {y} + y ^ 2 + 2y-5[/tex]

Finally:

[tex](f + g) (y) = y ^ 2 + \frac {1} {y} + 2y-5[/tex]

Answer:

[tex](f + g) (y) = y ^ 2 + \frac {1} {y} + 2y-5[/tex]