Respuesta :
Answer:
(f+g)(y) = 1/y + y2+2y-5
Step-by-step explanation:
To find (f+g)(y) we literally add the two expressions together. The expression becomes:
(f+g)(y) = f(y) + g(y)
= 1/y + y2+2y-5
For this case we have given two functions f (y) and g (y), then:
[tex](f + g) (y) = f (y) + g (y)[/tex]
We have:
[tex]f (y) = \frac {1} {y}\\g (y) = y ^ 2 + 2y-5[/tex]
Adding we have:
[tex](f + g) (y) = \frac {1} {y} + y ^ 2 + 2y-5[/tex]
Finally:
[tex](f + g) (y) = y ^ 2 + \frac {1} {y} + 2y-5[/tex]
Answer:
[tex](f + g) (y) = y ^ 2 + \frac {1} {y} + 2y-5[/tex]