Respuesta :

Answer:

see explanation

Step-by-step explanation:

Using the trigonometric identities

• sec x = [tex]\frac{1}{cosx}[/tex], csc x = [tex]\frac{1}{sinx}[/tex]

• cot x = [tex]\frac{cosx}{sinx}[/tex]

Consider the left side

sec²x. cot²x - cos²x. csc²x

= [tex]\frac{1}{cos^2x}[/tex] × [tex]\frac{cos^2x}{sin^2x}[/tex] - cos²x × [tex]\frac{1}{sin^2x}[/tex]

= [tex]\frac{1}{sin^2x}[/tex] - [tex]\frac{cos^2x}{sin^2x}[/tex]

= [tex]\frac{1-cos^2x}{sin^2x}[/tex]

= [tex]\frac{sin^2x}{sin^2x}[/tex] = 1 = right side ⇒ proven