Respuesta :

Answer:

4i√2

Step-by-step explanation:

you add it with a calculator

mark brainliest

For this case, we must add two negative roots:


[tex]\sqrt {-2} + \sqrt {-18}[/tex]

By definition, we know that:


[tex]i  = \sqrt {-1}[/tex]

[tex]i^2=-1[/tex]

So:


[tex]\sqrt {-2} = \sqrt {2i ^ 2} = i \sqrt {2}\\\sqrt {-18} = \sqrt {18i ^ 2} = i \sqrt {18}[/tex]

Also:


[tex]\sqrt {18} = \sqrt {9 * 2} = \sqrt {2 * 3 ^ 2} = 3 \sqrt {2}[/tex]

So, we have:


[tex]i \sqrt {18} = 3i \sqrt {2}[/tex]

So, we have:


[tex]\sqrt {-2} + \sqrt {-18} = i \sqrt {2} + 3i \sqrt {2} = 4i \sqrt {2} = 4 \sqrt {2} i[/tex]

Answer:


Option b