Respuesta :

Answer:

The diagonals of the rhombus ABCD bisect each other

Step-by-step explanation:

Given: ABCD is a rhombus and AC and BD are diagonals. All sides of the rhombus are equal.

To prove: AC and BD bisects each other.

Let O is the intersection point diagonals.

In triangle ABC, ABD, BCD and ADC are isosceles triangles.

In triangle AOB and COD,

[tex]\angle DBA=\angle BDC[/tex]

[tex]\angle COD=\angle AOB[/tex]              (Vertically opposite angle)

[tex]AB=DC[/tex]                                           (opposite side of rhombus)

By AAS postulate,

[tex]\triangle COD\cong \triangle AOB[/tex]

[tex]AO=OC[/tex]                                            (CPCTC)

O is the midpoint of segment AC.  Segment BD bisects segment AC.


In triangle AOD and COB,

[tex]\angle BDA=\angle DBC[/tex]

[tex]\angle COB=\angle AOD[/tex]              (Vertically opposite angle)

[tex]AD=BC[/tex]                                           (opposite side of rhombus)

By AAS postulate,

[tex]\triangle AOD\cong \triangle COB[/tex]

[tex]BO=OD[/tex]                                            (CPCTC)

Segment BO is congruent to segment OD.


O is the midpoint of segment BD.  Segment AC bisects segment BD.

Hence proved.

Ver imagen DelcieRiveria