ezinta
contestada

Find the correct values for the variables that make the statement cos(h)=x/y true.

H = °

x =

y =

Find the correct values for the variables that make the statement coshxy true H x y class=

Respuesta :

Answer:

The sum of the measures of the angles in a triangle is equal to 180 degree.

In triangle FGH;

[tex]\angle F + \angle G + \angle H = 180^{\circ}[/tex]

or

[tex]\angle H = 180^{\circ} -{\angle F + \angle G}[/tex]

Substitute the given values from the given figure we have;

[tex]\angle H = 180^{\circ} -{33^{\circ} + 90^{\circ}}[/tex]

[tex]\angle H = 180^{\circ} -{123^{\circ}}[/tex]

Simplify:

[tex]\angle H = 57^{\circ}[/tex]

Given that:

[tex]\cos H = \frac{x}{y}[/tex]

Using Cosine ratio:

[tex]\cos \theta = \frac{\text{Base}}{\text{Hypotenuse}}[/tex]

In a given figure:

Base = GH = x and Hypotenuse = FH = y = 80 cm

Then;

[tex]\cos 57^{\circ}= \frac{x}{80}[/tex]

or

[tex]x = \cos 57^{\circ} \cdot 80[/tex]  

[tex]x = 0.54463903501 \cdot 80 \approx 43.57[/tex] cm

Therefore, the value of :

[tex]H = 57^{\circ}[/tex]

x = 43.57 cm

y = 80 cm





The value of H is 57 degrees, x is 43.57, and y is 80 cm.

The sum of the measures of the angles in a triangle is equal to 180 degrees.

What is cosine function?

The cosine is defined as the ratio of the base of the triangle and the hypotenuse of the triangle.

[tex]\rm Cosh= \dfrac{Base}{Hypotenuse}[/tex]

Where the value of base x  is and Hypotenuse = FH = y = 80 cm.

The sum of the measures of the angles in a triangle is equal to 180 degrees.

Then,

In triangle FGH;

[tex]= \rm \angle F+\angle G + \angle H =180\\\\=90+33+\angle H =180\\\\\angle H = 180-90-33\\\\\angle H =180-123\\\\\angle H =57[/tex]

Substitute all the values in the formula;

[tex]\rm Cosh= \dfrac{Base}{Hypotenuse}\\\\Cos57=\dfrac{x}{80}\\\\x = Cos57 \times 80\\\\x=43.57 \ cm[/tex]

Hence, the value of H is 57 degrees, x is 43.57, and y is 80 cm.

To know more about the Cosine function click the link given below.

https://brainly.com/question/12150768