Respuesta :
[tex]Use\ (a^n)^m=a^{(n)(m)}\\\\((-3)^2)^3=(3^2)^3=3^{(2)(3)}=3^6\\\\((-3)^2)^3=(-3)^{(2)(3)}=(-3)^6[/tex]
Two answers: A. (-3)^6 and B. (3)^6.
But simplified is B. (3)^6
Answer:
A and B
Step-by-step explanation:
using the law of exponents
• [tex](a^m)^{n}[/tex] = [tex]a^{mn}[/tex], hence
[tex]((-3)^2)^{3}[/tex] = [tex](-3)^{6}[/tex] → A
note that (- 3)² = 9 = 3², hence
[tex](-3)^2)^{3}[/tex] = (3²)³ = [tex](3)^{6}[/tex] → B