Respuesta :
[tex]\mathsf{\heartsuit\;\; (\sqrt{8})^2 = \sqrt{64}}\\\\\mathsf{\heartsuit\;\; [(8)^\frac{1}{2}]^2 = \sqrt{(8)^2}}\\\\\mathsf{\heartsuit\;\; (8)^\frac{2}{2} = [(8)^2]^\frac{1}{2}}\\\\\mathsf{\heartsuit\;\; 8 = [8]^\frac{2}{2}}\\\\\mathsf{\heartsuit\;\; 8 = 8}\\\\\mathsf{\heartsuit\;\; Option\;(A)\;is\;the\;Answer}[/tex]
The number which will make the equation true, when placed in the box is: A. √8.
How to solve for the unknown number?
In order to determine the unknown number, we would assign a variable (x) to the unknown number and then evaluate the resulting algebraic equation as follows:
x² = √64
x² = 8
Taking the square root of both sides, we have:
x = √8.
Read more on algebraic equation here: brainly.com/question/13170908
#SPJ2