Respuesta :
Answer:
[tex]x^3 + 8x^2 + 11x-20[/tex]
Step-by-step explanation:
f(x) = x^2 + 3x − 4
g(x) = x + 5
To find f(x) * g(x) we multiply f(x) with g(x)
[tex]f(x) * g(x) = (x^2 + 3x -4) * (x+5)[/tex]
First multiply each term in f(x) and multiply with x+5
x^2 times x+5 becomes [tex]x^3+5x^2[/tex]
3x times x+5 becomes [tex]3x^2 + 15x[/tex]
-4 times x+ 5 becomes -4x -20
so f(x) * g(x) = [tex]x^3 + 5x^2 +3x^2 + 15x -4x -20[/tex]
Combine like terms
f(x) * g(x) = [tex]x^3 + 8x^2 + 11x-20[/tex]
Answer: [C]: " x³ + 8x² + 11x − 20 " .
______________________________________________________
Step-by-step explanation:
______________________________________________________
Given: " f(x) = x² + 3x − 4 " ; and
" g(x) = x + 5 " ;
Find: " f(x) ⋅ g(x) " :
______________________________________________________
f(x) ⋅ g(x) =
" (x² + 3x − 4) (x + 5) " ;
↔ " (x + 5) (x² + 3x − 4) " ;
______________________________________________________
Note: " (a + b) (c + d + e) = ac + ad + ae + bc + bd + ae " ;
______________________________________________________
→ " (x + 5) (x² + 3x − 4)
= (x * x²) + (x * 3x) + (x*-4) + (5*x²) + (5*3x) + (5*-4) " ;
= (x³) + (3x²) + (-4x) + (5x²) + (15x) + (-20) ;
= x³ + 3x² − 4x + 5x² + 15x − 20 ;
→ Combine the "like terms" :
+ 3x² + 5x² = + 8x² ;
− 4x + 15x = + 11 x ;
______________________________________________________
→ And rewrite:
______________________________________________________
→ " x³ + 8x² + 11x − 20 " ;
______________________________________________________
→ which is: Answer choice: [C]: " x³ + 8x² + 11x − 20 " .
______________________________________________________
Hope this helps!
Best wishes!
______________________________________________________