Respuesta :

12Av13
Figure A ≈ Figure B

Now,

From Figure B,

πr²h = 88 ft³

[tex] \frac{22}{7} \times {2}^{2} \times h = 88 \\ \frac{22}{7} \times 4 \times h = 88 \\h = 88 \times \frac{1}{4} \times \frac{7}{22} \\ h = 7 \:ft[/tex]

Now,
As the above statement says,
Fig. A ≈ Fig. B

πr²h
[tex] \frac{22}{7} \times {5}^{2} \times 7 \\ = 22 \times 25 \\ = 550 \: {ft}^{3} [/tex]

:)

[tex]\star[/tex] Heya! Wolfie [tex]\star[/tex]

In order to find the Volume of Similar Cylinders, First We need to Find the Scale Factor, which gives us the idea about How much times the Second Cylinder is enlarged than the First Cylinder.

Given : Radius of Cylinder B : 2 feet

Given : Radius of Cylinder A : 5 feet

⇒ [tex]Scale\;Factor = \frac{Radius\;of\;Cylinder-A}{Radius\;of\;Cylinder-B}[/tex]

⇒ Scale Factor = [tex]\frac{5}{2} = 2.5[/tex]

⇒ But the above Scale Factor is just for Radius

⇒ As these Cylinders are 3-dimensional Figures :

The Scale Factor for Volume : 2.5 × 2.5 × 2.5 = 15.625

⇒ Volume of Cylinder-A = 15.625 × Volume of Cylinder-B

⇒ Volume of Cylinder-A = 15.625 × 88 = 1375 ft³

Ver imagen Rinkhals