Respuesta :

[tex]Solution, solve\:for\:x,\:-4\left(2x+3\right)=5-\left(8x+1\right)\quad :\quad \mathrm{No\:Solution}[/tex]

[tex]Steps:[/tex]

[tex]\mathrm{Expand\:}-4\left(2x+3\right),\\-4\left(2x+3\right),\\\mathrm{Apply\:the\:distributive\:law}:\quad \:a\left(b+c\right)=ab+ac,\\a=-4,\:b=2x,\:c=3,\\-4\cdot \:2x+\left(-4\right)\cdot \:3,\\\mathrm{Apply\:minus-plus\:rules},\\+\left(-a\right)=-a,\\-4\cdot \:2x-4\cdot \:3,\\\mathrm{Simplify}\:-4\cdot \:2x-4\cdot \:3,\\-8x-12[/tex]

[tex]\mathrm{Expand\:}5-\left(8x+1\right),\\5-\left(8x+1\right),\\-\left(8x+1\right),\\5-8x-1,\\\mathrm{Simplify}\:5-8x-1,\\-8x+4[/tex]

[tex]-8x-12=-8x+4[/tex]

[tex]\mathrm{Add\:}12\mathrm{\:to\:both\:sides},\\-8x-12+12=-8x+4+12[/tex]

[tex]\mathrm{Simplify}, \\-8x=-8x+16[/tex]

[tex]\mathrm{Add\:}8x\mathrm{\:to\:both\:sides},\\-8x+8x=-8x+16+8x[/tex]

[tex]\mathrm{Simplify},\\0=16[/tex]

[tex]\mathrm{The\:sides\:are\:not\:equal}[/tex]

[tex]\mathrm{The\:Correct\:Answer\:is\:\mathrm{No\:Solution}}[/tex]

[tex]\mathrm{Hope\:This\:Helps!!!}[/tex]

[tex]\mathrm{-Austint1414}[/tex]