Respuesta :

Subtract [tex]\frac{6y+8}{3y}[/tex] from [tex]\frac{2y}{5y^2}[/tex]

LCD is 15y^2

First fraction has denominator 3y

To get LCD 15y^2 we multiply 3y by 5y. because 3y * 5y = 15y^2

Also to get 15y^2 in second denominator, we multiply 5y^2 by 3

because 5y^2 * 3= 15y^2

multiply [tex]\frac{6y+8}{3y}(\frac{5y}{5y})[/tex] from [tex]\frac{2y}{5y^2}(\frac{3}{3})[/tex]

Answer is option A

Answer:

The correct option is A) Multiply [tex]\frac{6y+8}{3y}(\frac{5y}{5y})[/tex] and [tex]\frac{2y}{5y^2}(\frac{3}{3})[/tex].

Step-by-step explanation:

Consider the provided expression.

Subtract [tex]\frac{6y+8}{3y}[/tex] from [tex]\frac{2y}{5y^2}[/tex]

It is given that LCD of the expression is 15y².

Now observe the denominator of each expression.

The expression [tex]\frac{6y+8}{3y}[/tex] has denominator 3y.

In order to make denominator 15y² multiply 3y with 5y.

[tex]3y\times{5y}=15y^2[/tex]

The expression [tex]\frac{2y}{5y^2}[/tex] has denominator 5y².

In order to make denominator 15y² in second expression, multiply 5y² with 3.

[tex]5y^2\times{3}=15y^2[/tex]

Thus, the next step is:

Multiply [tex]\frac{6y+8}{3y}(\frac{5y}{5y})[/tex] and [tex]\frac{2y}{5y^2}(\frac{3}{3})[/tex].

Therefore, the correct option is A) Multiply [tex]\frac{6y+8}{3y}(\frac{5y}{5y})[/tex] and [tex]\frac{2y}{5y^2}(\frac{3}{3})[/tex].