Answer:
[tex]_{93}^{232}\text{Np} + _{-1}^{0}\text{e} \longrightarrow _{92}^{232}\text{U}[/tex]
Explanation:
The unbalanced nuclear equation is
[tex]_{93}^{232}\text{Np} + _{1}^{0}\text{e} \longrightarrow ?[/tex]
It is convenient to replace the question by an atomic symbol, [tex]_{x}^{y}\text{Z}[/tex], where x = the atomic number, y = the mass number, and Z = the symbol of the element.
[tex]_{93}^{232}\text{Np} + _{1}^{0}\text{e} \longrightarrow _{x}^{y}\text{Z}[/tex]
Then your equation becomes
[tex]_{93}^{232}\text{Np} + _{1}^{0}\text{e} \longrightarrow _{x}^{y}\text{Z}[/tex]
The main point to remember in balancing nuclear equations is that the sums of the superscripts and of the subscripts must be the same on each side of the equation.
Then
93 – 1 = x, so x = 92
232 + 0 = y, so y = 232
Element 92 is uranium, so the nuclear equation becomes
[tex]_{93}^{232}\text{Np} + _{-1}^{0}\text{e} \longrightarrow _{92}^{232}\text{U}[/tex]