Answer : 0.8663 Kg of chalcopyrite must be mined to obtained 300 g of pure Cu.
Solution : Given,
Mass of Cu = 300 g
Molar mass of Cu = 63.546 g/mole
Molar mass of [tex]CuFeS_2[/tex] = 183.511 g/mole
[tex]\text{ Moles of Cu}=\frac{\text{ Given mass of Cu}}{\text{ Molar mass of Cu}}= \frac{300g}{63.546g/mole}=4.7209moles[/tex]
The moles of Cu = 4.7209 moles
From the given chemical formula, [tex]CuFeS_2[/tex] we conclude that the each mole of compound contain one mole of Cu.
So, The moles of Cu = Moles of [tex]CuFeS_2[/tex] = 4.4209 moles
Mass of [tex]CuFeS_2[/tex] = Moles of [tex]CuFeS_2[/tex] × Molar mass of [tex]CuFeS_2[/tex] = 4.4209 moles × 183.511 g/mole = 866.337 g
Mass of [tex]CuFeS_2[/tex] = 866.337 g = 0.8663 Kg (1 Kg = 1000 g)
Therefore, 0.8663 Kg of chalcopyrite must be mined to obtained 300 g of pure Cu.