Respuesta :

we are given

[tex]-\frac{2}{3} (2x-\frac{1}{2}) \leq\frac{1}{5}x-1[/tex]

Since, we have to solve this inequality

so, we will isolate x on anyone side

step-1:

Multiply both sides by 3/2

[tex]\frac{3}{2}\times-\frac{2}{3}(2x-\frac{1}{2})\leq\frac{3}{2}\times(\frac{1}{5}x-1)[/tex]

[tex] -(2x-\frac{1}{2})\leq\frac{3}{2}\times\frac{1}{5}x-\frac{3}{2}\times 1[/tex]

[tex] -(2x-\frac{1}{2}) \leq\frac{3}{10}x-\frac{3}{2}[/tex]

step-2:

Distribute negative sign

[tex] -2x+\frac{1}{2} \leq\frac{3}{10}x-\frac{3}{2}[/tex]

step-3:

Subtract both sides by 1/2

[tex] -2x+\frac{1}{2}-\frac{1}{2} \leq\frac{3}{10}x-\frac{3}{2}-\frac{1}{2}[/tex]

[tex] -2x \leq\frac{3}{10}x-2[/tex]

step-4:

Subtract both sides by (3/10)x

[tex]-2x-\frac{3}{10}x \leq\frac{3}{10}x-2-\frac{3}{10}x[/tex]

[tex]-2x-\frac{3}{10}x \leq-2[/tex]

[tex]-\frac{23}{10}x \leq-2[/tex]

step-5:

Multiply by sides by -10/23

[tex]-\frac{10}{23}\times -\frac{23}{10}x \geq-\frac{10}{23}\times-2[/tex]

now, we can simplify it

[tex]x \geq\frac{20}{23}[/tex]

now, we can write in interval notation as

[tex][\frac{20}{23},\:\infty \:)[/tex]................Answer