Given: F(x) = 3x 2 + 1, G(x) = 2x - 3, H(x) = x

Find: F(3) + G(4) - 2H(5) =



question 2

Given: F(x) = 5x - 6 and G(x) = x - 4

(FoG) -1 =



Respuesta :

F(x) = 3x^2 + 1, G(x) = 2x - 3, H(x) = x

F(3) = 3(3)^2 + 1 = 27 + 1 = 28

G(4) = 2(4) - 3 = 8 - 3 = 5

2H(5) = 2(5) = 10

F(3) + G(4) - 2H(5) = 28 + 5 - 10

F(3) + G(4) - 2H(5) = 23

question 2

Given: F(x) = 5x - 6 and G(x) = x - 4

(FoG) (x) = F(G(x)) = 5(x-4) - 6

= 5x - 20 - 6

= 5x - 26

Inverse

x = 5y - 26

5y = x + 26

y = x/5 + 26/5

So

(FoG) -1 (x) = x/5 + 26/5

A composite function is the combination of more than one functions to form another function.

The results of the computations is as follows:

  1. [tex]F(3) + G(4) - 2H(5) = 23[/tex].
  2. [tex](F\ o\ G)(-1) = -31[/tex]

(1) Given that:

[tex]F(x) = 3x^2 + 1[/tex]

[tex]G(x) = 2x - 3[/tex]

[tex]H(x) = x[/tex]

To calculate F(3) + G(4) - 2H(5)

First, calculate F(3)

[tex]F(x) = 3x^2 + 1[/tex]

[tex]F(3) = 3 \times 3^2 + 1 = 28[/tex]

Next, calculate G(4)

[tex]G(x) = 2x - 3[/tex]

[tex]G(4) = 2 \times 4 - 3 = 5[/tex]

Next, calculate H(5)

[tex]H(x) = x[/tex]

[tex]H(5) = 5[/tex]

So, we have:

[tex]F(3) + G(4) - 2H(5) = 28 + 5 - 2 \times 5[/tex]

[tex]F(3) + G(4) - 2H(5) = 23[/tex]

(2) Given

[tex]F(x) = 5x - 6[/tex]

[tex]G(x) = x - 4[/tex]

First, we calculate (F o G)(x)

[tex](F\ o\ G)(x) = F(G(x))[/tex]

Given that:

[tex]F(x) = 5x - 6[/tex]

Replace x with G(x)

[tex]F(G(x)) = 5 \times G(x) - 6[/tex]

Substitute [tex]G(x) = x - 4[/tex]

[tex]F(G(x)) = 5 \times [x - 4] - 6[/tex]

So, we have:

[tex](F\ o\ G)(x) = 5 \times [x - 4] - 6[/tex]

Substitute -1 for x

[tex](F\ o\ G)(-1) = 5 \times [-1 - 4] - 6[/tex]

[tex](F\ o\ G)(-1) = 5 \times [-5] - 6[/tex]

[tex](F\ o\ G)(-1) = -31[/tex]

Read more about composite functions at:

https://brainly.com/question/10830110