Respuesta :
The volume of the column is
(π) · (r²) · (length) =
(π) · (0.19 meter)² · (2.6 meters) =
(π) · (0.036 m²) · (2.6 m) =
0.294 m³ .
The density is 2,450 kg/m³ (VERY very dense, heavy concrete)
so the weight of the column is (mass)·(gravity) or
(density) · (volume) · (gravity) =
(2,450 kg/m³) · (0.294 m³) · (9.81 m/s²) =
(2,450 · 0.294 · 9.81) (kg · m³· m) / (m³ · s²) =
7,066 kg-m/s² = 7,066 Newtons .
But 9.81 Newtons = 2.20462 pounds on Earth (the weight of 1 kilogram of mass), so we have
(7,066 N) · (2.205 pound/9.81 N) =
(7,066 · 2.205 / 9.81) pounds =
1,588 pounds .
The mass is the product of the volume and dencity. The mass of the given concrete column is [tex]1.58733\times 10^{-6} \rm \ pounds[/tex].
The volume of the column:
[tex]V = \pi r^2h[/tex]
Where,
[tex]r - \rm radius = 380 \ mm = 0.36 \ m[/tex]
[tex]h -[/tex]height = 2.6 m
Put the values in the equation,
[tex]V = \pi \times 0.19^2 \times 2.6\\\\V = 3.14 \times 0.0361\times 2.6\\\\V= 0.294\rm \ m^3[/tex]
The density of the column is 2.45 mg/m³
So, the mass of the column is
[tex]m = 0.294 \times 2.45 \\\\m = 0.72 \rm{ \ mg} \\\\m = 1.58733\times 10^{-6} \rm \ pounds[/tex]
Therefore, the mass of the concrete column is [tex]1.58733\times 10^{-6} \rm \ pounds[/tex].
Learn more about density:
https://brainly.com/question/958038