Verify that the divergence theorem is true for the vector field f on the region
e. give the flux. f(x, y, z) = 4xi + xyj + 5xzk, e is the cube bounded by the planes x = 0, x = 2, y = 0, y = 2, z = 0, and z = 2.

Respuesta :

By the divergence theorem, the flux of [tex]\mathbf f(x,y,z)=4x\,\mathbf i+xy\,\mathbf j+5xz\,\mathbf k[/tex] across the boundary [tex]\partial E[/tex] of the cube [tex]E[/tex] is equal to the integral of [tex]\nabla\cdot\mathbf f[/tex] over [tex]E[/tex]:

[tex]\displaystyle\iint_{\partial E}\mathbf f\cdot\mathrm d\mathbf S=\iiint_E\nabla\cdot\mathbf f\,\mathrm dV[/tex]

We have divergence

[tex]\nabla\cdot\mathbf f=\dfrac{\partial(4x)}{\partial x}+\dfrac{\partial(xy)}{\partial y}+\dfrac{\partial(5xz)}{\partial z}=4+6x[/tex]

and so the flux is

[tex]\displaystyle\iiint_E(4+6x)\,\mathrm dV=\int_{z=0}^{z=2}\int_{y=0}^{y=2}\int_{x=0}^{x=2}(4+6x)\,\mathrm dx\,\mathrm dy\,\mathrm dz[/tex]

[tex]=4(4x+3x^2)\bigg|_{x=0}^{x=2}=80[/tex]