Respuesta :

DeanR

[tex] (x+3)^2 =4 y[/tex]

That's a parabola, almost in vertex form:

[tex]y = \frac 1 4 (x+3)^2[/tex]

The translation is

[tex] (x',y') = T_{(-7,2)} (x,y) = (x-7, y+2)[/tex]

[tex] x= x'+7, y=y'-2[/tex]

Substituting translates the graph. None of the choices have fractions so we substitute into the original form:

[tex](x'+7+3)^2=4(y'-2)[/tex]

We can drop the primes now and simplify,

[tex](x+10)^2=4(y-2)[/tex]

[tex]x^2 + 20 x + 100 = 4y -8[/tex]

[tex]x^2 + 20 x - 4y + 108 = 0[/tex]

Choice C.

This method generalizes nicely to rotations, reflections and other transformations.