To help answer this question, put each equation into slope intercept form:
1) 5x+3y=4
3y=-5x+4
[tex] y=-\frac{5}{3}x+\frac{4}{3} [/tex]
2) 5x-3y=-4
-3y=-5x-4
[tex] y=\frac{5}{3}x+\frac{4}{3} [/tex]
3) 4x+16y=-20
16y=-4x-20
[tex] y=-\frac{1}{4}x-\frac{5}{4} [/tex]
4) 6x+2y=-8
2y=-6x-8
[tex] y=-3x-4 [/tex]
So the only equation that satisfies the conditions is number 4